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The linear Boltzmann equation 1s formulated against a movmg material background in 
both Eulerian and Lagrangtan representations. One-dimensional slab and spherical geometries 
and two-dimensional cylindrical geometry are treated. Material acceleration terms are expan- 
ded locally, effective cross sections and moving sources are defined, and the continmty 
equation is coupled to the transport equation in a consistent manner. Relative importances of 
material motion terms are discussed and a simple approximation to the material acceleration 
term is suggested. Standard multigroup representations for the material motion terms are 
obtained and an iteration strategy used to solve the transport equation is reviewed. Specific 
applications are presented and contrasted. @?’ 1987 Academc Press, Inc. 

1. INTRODUCTION 

The linear transport equation has a range of applicability in diverse areas of 
physics, chemistry, medicine, engineering, and applied mathematics. ost 
applications employ the static equation, treating the material background as ed. 
Ahhough the static approach is a very good starting point, material motion effects 
become pronounced as local accelerations and velocities increase, especially relative 
to the lower energy components of the transport particle spectrum. With the excep- 
tions of radiation and high energy electron transport, material motion effects are 
basically nonrelativistic, and usually involve classical Galilean (velocity) frame 
transformations. Even if such physical corrections to the static equation are 
straightforward conceptually, they are often difficult to treat numerically. Material 
motion terms induce additional degrees of freedom into solution algorithms base 
on the static transport equation. 

Certain analyses require the coupling of hydrodynamic and transport equations. 
Hydrodynamics is posed in Eulerian (fixed mesh) or Lagrangian (moving mesh) 
representations, or hybrid intermediary pictures [l]. To maximize the effrcieney of 
coupled calculations, it is sensible to pose both the transport and hydrodynamic 
equations in the same picture. Motion corrections to the transport equation take 
different functional forms in Eulerian and Lagrangian frames, though the physical 
content is the same. 
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Effects of a moving background can be important [2-91. Both the magnitudes of 
the relative velocity and acceleration, and any directional anisotropy, between 
transport particle and material background can dramatically influence solutions to 
the transport equation. Within the static framework, it is still possible, however, to 
account for a moving background by inclusion of material motion terms directly in 
the equation [45], consistent redefinition of the interaction probability [2-61 
(cross section), and proper transformation of moving external source terms [2-51, 
in respective ,Eulerian and Lagrangian frames. 

Moving backgrounds introduce four generic correction factors to the static trans- 
port equation. In the coupled hydrodynamic mode, these corrections take the form 
of a density modification to the time derivative of the flux, a material acceleration 
term which contributes additional effective group sources, a cross section renor- 
malization which preserves interaction probability, and a (moving) source transfor- 
mation. Both a quantitative and qualitative, theoretical and numerical, description 
of these four factors is a focus of this analysis. 

Section 2 describes the linear transport equation with modifications induced by a 
moving background, lists the continuity equation, and obtains an explicit operator 
expression for the acceleration. Section 3 discusses external and pseudo-forces in 
Eulerian and Lagrangian pictures, couples transport to material continuity, and 
quantities relative importances of competing motion terms. Section 4 considers 
effective cross sections in Eulerian representations. Section 5 differences the 
Lagrangian acceleration terms according to standard multigroup [l&12] 
procedures, while Section 6 reviews an iteration strategy used to solve the transport 
equation, indicating appropriate placement of material motion terms within existing 
iteration schemes. Section 7 compares calculations with and without material 
motion corrections. The appendices detail the differential reductions of various 
transport and acceleration terms in one-dimensional plane and spherical geometry 
and two-dimensional cylindrical geometry. 

2. TRANSPORT AND HYDRODYNAMICS PHENOMENOLOGY 

The standard transport equation in a fixed frame, with no material motion, takes 
the form [6], 

with 

s= gJp’d3D’+Q, s 
for &r, v, t) the flux, v the particle velocity, V the spatial gradient, C(V) and 
&J(v’, v)/d3u the total and differential cross sections, and Q all external sources. 
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Equation (1) is a simple conservation statement for a fixed background. If there 
is background motion, the cross sections, which quantify the interaction 
probability, must be redefined in terms of the relative velocity, 

q=v-u, (3) 

with u the material velocity. If the particle suffers acceleration, additional ter 
must also be added to the equation. Accordingly [Z-6], Eqs. ( 1) and (2) are 
rewritten 

S(v) = j $ qY d3v’ + Q(v), 

with a the acceleration, V, the velocity gradient, and bars denoting an effective 
quantity, obtained by transforming the corresponding variable from the moving 
frame [4]. 

The interaction rate qo(q), is invariant in all frames, and the definitions of 
the effective cross sections reiterate the fact. Thus the cross sections are scaled by 
the ratio of relative to frame particle velocity and additionally multiplied by the 
velocity jacobian, that is, 

s WV’> v) d3C, 4v)= a3v’ > 
aqv’, v) q’ ib(q’, q) a3qi 
--&T-=- d a3qf aw 

The effective frame source must conserve particles in energy phase space, so that we 
write, in analogy with the second of Eqs. (6) as 

The jacobians in Eqs. (6) and (7) connect speeds and scattering angles in the two 
representations q and v. Of course, if the effective cross sections and sources are 
already known in the Eulerian frame, the transformation Eqs. (6) and (7) are not 
necessary. Usually, however, cross sections and sources are specified in their local 
rest frames, so that transformation is required. The Lagrangian frame, of course, is 
taken as the local rest frame. 

Expressions for the acceleration, a, depend on external forces, F, and represen- 
tation (Eulerian or Lagrangian). Though Eq. (4) is still given in the (r, v, t) picture, 
the interaction probability has been properly defined and the equation now 



180 WIENKE, HILL, AND WHALEN 

contains an additional a . V,q5 term. In a Eulerian frame, the (r, v, t) picture is 
convenient. In a Lagrangian frame, the (r, q, t) representation is natural. 

The (hydrodynamic) continuity equation for the density, p, takes the Eulerian 
form [l, 71, 

ap cit+v.pu=o, 

while, in a Lagrangian frame, the expression is given in terms of the advective 
derivative, DID& 

with 

+;+..v. (10) 

External forces, F acting on the transport particle directly induce accelerations, a, 
in the usual way, 

F 
a=-, 

M (11) 

with h4 the particle mass. In an Eulerian frame, in the absence of material drag, 
external forces are the only operative mechanisms inducing accelerations. However, 
in Lagrangian frames, material accelerations generate pseudo-forces on the trans- 
port particle [S, 8, 91, that is, the force is not directed at the particle, but the effect 
must be included in the relative velocity balance equation. The continuity equation 
can then be coupled to the Lagrangian transport equation through the material 
divergence term, V * u. 

Accordingly, in an Eulerian frame, employing the (r, v, t) picture, we denote the 
particle acceleration, 

dv F 
z=jyj> (12) 

while in a Lagrangian frame, using the (r, q, t) representation, the particle 
acceleration includes material effects, 

d9=E!-(v.V)u, 
dt M at 

which can be rewritten using Eqs. (3) and (lo), 

(13) 

d9=F-Du-(q.V)“. 
dt M Dt (14) 
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Obviously, the frame accelerations, given by Eqs. (12) and (14), are connected 
the simple relationship, 

dq dv du 
-=---2 
dt dt dt 

consistent with Eq. (3). 
The transport equation is a scalar conservation statement; and, therefore, 

coupling to a scalar hydrodynamic equation such as the continuity equation seems 
a natural choice. Higher order moments of the transport equation could be coupled 
ts the energy and momentum hydrodynamic equations, when necessary. 

3. COUPLED TRANSPORT AND HYDRODYNAMICS 

The foregoing analysis can be collected into convenient Eulerian and Lagrangian 
representations for the transport equation which properly account for material 
motions and recover the static equation in the zero motion limit. 

The transport equation in the Eulerian frame remains, 

with a the acceleration due just to external forces, dv/dt. The hydrodynamic cou- 
pling occurs through the effective cross sections and sources. The effect of a moving 
background on the interaction cross section is reflected by Eq. (6) in the large and 
small material velocity limit. Clearly for u z v, the effective cross section is small? 
since q/v --f 0. If u z -v, the effective cross section might double, since q/v -+ 2. For 
small material velocities, 0 -+ cr(v), while for large material velocities, 0 -+ z&a(u). 
Under such diverse conditions, considerably different transport behavior is induced 
by the material motion. Similar comments hold for the source, s(v). 

In a Lagrangian frame, the transport equation takes the form, 

with a the acceleration due both to external forces and relative velocity changes, 
dqldt. The effective cross sections and sources in Eq. (16) are now replaced with the 
actual cross sections and sources specified in the moving frame. The Lagrangian 
transport equation can be coupled to the continuity equation by first noting 

V&q. VI = v, (181 

so that commuting the V, operator through all except the (q . V) u term, we obtain 

a.Vyfj=Vy.(ad)-(V.u)fj. 119) 
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The continuity expression for V . u, Eq. (9) reduces to 

p DP-’ -=v.u, 
Dt 

so that the Lagrangian transport equation can be rewritten, 

pDW’4) 1 
4 Dt 

+iq~vm+o(q)g=s(q)-~v,..(. 

(20) 

(21) 

As u--f 0, material motion terms can again be neglected, but more generally, 
q + v, 5(u) -+ a(u), s(v) + S(v), and Eq. (21) becomes identical to Eq. (1). For 
divergenceless flow, V. u = 0, time derivatives of p drop out of the left-hand side of 
Eq. (21) so that the only remaining hydrodynamic coupling enters through a. 

Coefficients of the flux, 4, carry units of inverse length, thus providing a con- 
venient metric for comparison of relative motion corrections to the transport 
equation. As flux coefficients, corrections can be grouped, 

9 
-l Dlnp 

Dt’ 
q-‘V,.a, 0, &, 

in corresponding Eulerian and Lagrangian frameworks. All correction coefficients 
vanish, or reduce to their static forms, as u --f 0. Coefficients involving p are only 
linked to Lagrangian material compressions and expansions. Coefficients involving 
q ‘V . a are coupled to uniform accelerations in both frames, as well as Lagrangian 
material compressions and expansions. Corrections due to 3, &?/laQ’, and S, are 
operative under all types of Eulerian material motion, that is, compressions, expan- 
sions, uniform accelerations, or uniform translations. 

Relative strengths of competing corrections are determined by the absolute 
magnitudes of the above coefficients, which in turn are determined by rates of 
expansion and compression, relative speeds, energy dependence of interaction 
probabilities, translational forces, etc. For small material motions, the Eulerian 
effective cross section, quantifying relative interaction rates, and the Lagrangian 
density renormalization of the flux in the advective derivative, requisitely conserv- 
ing particles at each time step, appear most important. As material accelerations 
and velocities increase, the remaining correction terms grow in relative importance. 
In the ultra-high material motion regime, correction terms share equal importance 
and dominate the transport equation in both representations. 

The Lagrangian equation contains two correction terms, due to the fact that 
relative velocities, q, are employed as a basis. Corrections occur through the advec- 
tive time derivative and acceleration, a. Similarly, the Eulerian equation, employing 
the laboratory velocities, v, contains two correction terms due to material motion. 
The cross section and scattering source must be renormalized to the relative 
interaction probability. Moving external and production source terms must also be 
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specified and transformed, in the absence of prior definition in the nonmoving 
frame. The physical content of both sets of correction terms is, of course, the same, 
regardless of representation. 

Expressions for operator products appearing above are obtained by transforming 
from the (x, y, z, u,, vY, v,) or (x, y, z, q,, qy, q,) Euclidian bases to the desired 
geometry [S] via the chain rule. While this method is tedious, it is straightforwar 
and tractable. Details of the reduction are sketched in Appendices A and B for one- 
dimensional plane and spherical, and two-dimensional cylindrical, geometries. 

4. EULERIAN EFFECTIVE CROSS SECTIONS 

The Eulerian effective cross sections, 

d3v’, 

conserve interaction probability, but the scaling factor, q’/v’, however, imparts 
additional directional anisotropy to the terms. While the differential scattering cross 
section already depends on angle, the total cross section is only a function of energy 
(or magnitude of relative velocity). The relative importance of the added anisotropy 
depends on the magnitude of the material and particle velocities. 

Since, from Eq. (3), 

q’ = (0’2 + u* - 2u v’)1/2, 

we have in the small material velocity limit, u < v’, 

!L,l-“.v’ 
V’ 

--Y-i-> 
V 

while, in the large material velocity limit, u > v’, 

(24) 

with similar expressions for q/v. The anisotropy, measured by the u . v’ contribution, 
occurs in first order in the low material velocity limit, but only in second order in 
the high material velocity limit. For u z v’, the anisotropy competes with other 
terms in Eq. (23) to all orders, and the scaling factor, q’/u’, ranges from zero to two, 
roughly. 
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Generally, in one-dimensional plane, (x, v, ,u) and spherical, (Y, v, ,u), geometries, 

u .v = vpux,r, (26) 

and two-dimensional cylindrical, (d, z, v, p, r), geometry, 

u~v=VpU~+Vfp,, (27) 

with subscripts denoting material velocity components, and ,M, q denoting direction 
cosines (Appendix A). 

In conventional multigroup fashion, the effective cross sections can be expressed 
as Legendre polynomials by expanding the scaling terms. In one-dimensional 
geometry, 

i’-$- w2+ ~2yw31’2= f w; 1) [:,p,(p,), 
fZ=O 

(28) 

so that, employing [ 131 

s ’ (a’ + b2 - 2abx) -v2 cos[/2(u2 + b2 - 2abp)1’2] P,(x) dx 
-1 

= -~J,,+,,2(ia)N,+,,(l.h) O<u<b, (29) 

the moments take the form, 

a2 
i:,= -g& CJ,+,,2(~~‘)~,+l,2(~~)ln=o u’ < 24, (31) 

for J, + 1/2 and Nn + 1l2 half-integer Bessel functions. The first two moments are given 
by 

ib= 
2(3~‘~ + u’) 2u(u2 - 5v’2) 

3U” ) i; = 151Y3 
v’ > u, (32) 

ib= 
2( 3u2 + v”) - 

3u2 2 i’, 
2v’(v’2 5U2) 

= 15u3 
d<u. (33) 

In the large u and v’ limits, only the zeroth moments survive, consistent with 
Eqs. (24) and (25). Physically, the relative symmetry of the Legendre expansion in 
the large material and particle velocity limits is to be expected. The relative speed, 
q’, approaches either the material speed, u, or the particle speed, v’, in the large 
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velocity limit, and the interaction probability, q’o(q’), depends only on the relative 
speed. 

The differential scattering kernel can also be expanded in a multiple Legendre 
series and then reduced through orthogonality of the Legendre polynomials. Again 
expanding the scaling factor, flux, and differential scattering cross section, including 
the jacobian in the cross section definition, 

with ii, a;, and 4: as moments, and v . v’ = uv’x (azimuthal scattering symmetry), 
using the addition theorem for P,(x), and integrating, we obtain 

with c!?,~ the Kronecker delta. In the large u and u’ limits, only the [b terms survive 
and the usual Legendre expansion of the scattering kernel is recovered. 

Following the multipgroup prescription [lC!-12, 14, 151, we discretize the 
velocity (or energy) space into G groups, 1 d g 9 G and integrate the scattering 
kernel over velocity. Using Eqs. (34) and (3.5) there results 

with crg’*g the differential scattering cross section from group g’ to g, and !P’ an 
ig’, group-averaged moments. Though much detail is embedded in the expansion 
Eqs. (35) and (36), the forms are completely analogous to axed-ba~k~o~~d 
expressions and provide a natural extension for the moving material effective 
sections. Simlilar expansions using spherical harmonics, Yy(p, Q), are tracta 
two-dimensional cylindrical geometry. 
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5. LAGRANGIAN ACCELERATION SOURCES 

Component forms of qP ‘V,. a# are the same in various geometries of interest. 
They consist of an energy transfer term, a/aq, plus a scattering term, a/ap, or a/aq, 
which lend themselves to multigroup reduction in a couple of ways [14-171. 
Designating the components, (qPIV, .ad),, with j= x, r in the one-dimensional 
case, we can write, in general (Appendix B), 

a (I-$) a 
(qPIV,.ad)I=i ,u--+-- 

i a4 4 ap I 
a,d, (37) 

with ,M the appropriate direction cosine. Both forms are useful in applications. The 
left-hand side can be differenced in energy and angle, while the right-hand side can 
be expanded in Legendre functions prior to energy differencing. 

Differenced Material Source Expansion 

Consistent with discrete ordinates [14, 151 practice, we partition spherical 
velocity space into M discrete directions and define a set of recursive angular coef- 
ficients, a, which satisfy 

am + l/2 - @-PI 112 = -2wrdLz, (38) 

for 16 m GM, m &t edge values in the discretization, and w, a set of Gaussian 
quadrature weights, (w,, pcl,), which operationally replace the integral over 
directions, 

s s 

M 

dQ=2n dp-+4n C w,,, 
m=l 

(39) 

in numerical application. The CI are constructed to just cancel the remaining terms 
in the velocity derivative when Eq. (37) is differenced conservatively using the 
divergence theorem and 4 is the constant solution. Table I lists some Gaussian 
quadrature sets in one-dimensional plane and spherical geometry. 

As before, we partition the velocity domain into G groups and denote the 
appropriate midpoint velocities as qg, with 1 d g d G. Corresponding angular fluxes 
are designated as I&, 4:’ rj2, and 45 I 1,2, etc. Integrating Eq. (37) over group 
velocities, using the divergence law, and dividing by the group integral yields 

Sd%(q-‘Vy.a~)jq2dqd~ ai M wm~m(q~+1,2~~+1’2-q~--,2~~-1~2) 

s 
c 

dqgq2&dQ =%,=I q; 4, 

+( %I + l/2 4” m + t/2 - urn - l/2 4” 1 m - l/2 
> (40) 

qg 
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TABLE I 

One-Dimensional Gaussian 
Quadrature Sets 

Order P Weight 

Sr *.511 0.500 
s4 i.861 0.174 

+.339 0.326 

ss & ,960 0.050 
+.796 0.111 
+.525 0.156 
k.183 0.183 

with 

Aq,=q,+l/2-qg-l,‘z> 

4;+ 112 - 4; - l/2 = 2qgAq,, 

29g = 9g + l/2 + 9g - l/2 ~ 

The diamond approximation [14, 151 can also be employed to link edge- and 
cell-centered group fluxes, 

G21 = d, g + 10 + $f- 112, 642) 

and edge- and cell-centered angular fluxes, 

Using the nonrelativistic expression for the group energy, .ag, 

Eg = @fq;, 

(43) 

(44) 

the above set of velocity space equations can be transformed to the multigroup 
energy representation by the replacement, 

with A4 the usual particle mass. 
In two-dimensional cylindrical geometry, another set of angular coefficients, tx’, 

which satisfy the same recursion, Eq. (38), are introduced for II. The same differen- 
cing techniques apply to the acceleration source term involving q. Table II lists 
two-dimensional Gaussian quadrature sets in cylindrical geometry. 

In its present form, Eq. (40) displays the outer coupling via 4;’ l/2 and the inner 
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TABLE II 

Two-Dimensional Gaussian Quadrature Sets 

Order 

s2 

s4 

‘% 

P 1 Weight 

*.511 k.511 0.250 

i.302 5.904 0.083 
f.904 5.302 0.083 
iy.302 k.302 0.083 

k.192 +.962 0.029 
*.511 k.193 0.023 
k.192 +.193 0.023 
f.793 k.511 0.023 
k.511 ,.571 0.023 
rfr.192 ~.511 0.023 
+.962 i.192 0.029 
k.193 +.192 0.023 
k.511 +.192 0.023 
i.192 +.192 0.029 

coupling via 4; f r,?. These terms can also be expanded for multigroup implemen- 
tation by means of a Legendre expansion. 

Legendre Material Source Expansion 

An alternative treatment [9, 16, 171 of the inner, or scattering, material source 
term proposes a Legendre expansion of the (1 -,L?) a(a,b)/ap term instead of the 
conservatively differenced a expression in Eq. (40). Noting that, 

(t -pzfK(d n(n+ 1) 
-=- IIP,-1(p)-P,+1(p)], 

& (2n+ 1) (46) 

for P,, the Legendre polynomials, we expand the angular part of Eq. (37) in 
Legendre moments, $f, of the angular flux, 

(47) 

with the /I chosen to yield the usual inscatter-minus-outscatter form of the expan- 
sion [16] to (M- 1)th order in the extended transport approximation [18]. 
Closing the expansion at n = M- 1, employing Eq. (47), and collecting coeffkients 
of p,, 
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with, by construction, &,- I = 0. The moments satisfy 

and can be computed directly to estimate the extended transport coefficients 3n 
Eq. (48). Alternatively, the moments in Eq. (48) could be treated as a set of 
weighting functions [9, 161 in evaluating &. 

The transfer term, ~*a(Q)/aq, can be expanded in similar fashion. Using 6 
identity, 

1 
cLPrz(cL) = (2n + 1) ____ Cb+ 1)Pn+l(Pl)+nPn-l(P)l~ 

the transfer term is rewritten 

Closing the expansion at n = M - 1 and gathering coefficients of P,, we obtain 

yg=“’ lay: 
L 1 
-- > 

qg 3 aq 

1 ' 
n<M-1, (521 

The differential moments, dY/dq, can be differenced as previously described. En two- 
dimensional cylindrical geometry, the acceleration terms involving ,D and q are 
similarly expanded in spherical harmonics, Yy(p, q). 

6. MULTIGROUP ITERATION SCHEME 

The transport Eq. (1) is usually solved by iteration on the scattering kernel given 
in Eq. (2). The modified Eqs. (16) and (21) are amenable to the same techniques 
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used to solve Eq. (1) following the inclusion of additional terms in the iteration 
operators. Standard Jacobi, Richardson, GaussSeidel, and Liebmann [ 19,201 
iteration techniques have been applied to Eq. (1) and our additional terms, 8, 
&F/a3v’, q-IV, .a, and q -lD In p/Dt, are easily incorporated into those numerical 
methods. 

The multigroup transport equation can be written in operator form, where @ is 
the angular flux, 

(L+X)@=(S+D+U)ct,+Q, (53) 

and L, C, S, D, U, and Q are the streaming, collision, self-scatter, downscatter, 
upscatter, and external source operators. With regards to Eq. (4), we specifically 
take 

Z=fF+LV,.a,,,, 
Ug 

S=/ [g] dQ’, 
g-rg (54) 

dQ’+LV,.a,,,, h >g, 
I, + g V&T 

Q=Q, 

where v;‘V,.a,,, denotes that part of the acceleration term which connects group 
h to group g, and 

for a: the group absorption cross section. The usual replacements convert the above 
set of Eulerian equations to Lagrangian form. Upscatter, or downscatter, 
underscores energy transfers between higher, or lower, energy groups, while self- 
scatter implies no energy transfer. Groups are arranged from highest to lowest 
energy group consecutively. Equation (53) is solved with a nested, dual iteration 
scheme, populary called the inner-outer sweep, in the following way. 
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Denoting an iteration index, i, the outer sweep takes the symbolic form, 

(L+~)@‘+‘=(S+D)W+‘+UW+ (56) 

The upscatter source is computed from the previous iterate, UW, and the external 
source, Q is constant. For inner iterations, it is easy to define a fixed effective 
source, QQ, by 

QQ’ = Da’+ ’ + UW + (571 

in solution sweeps from higher to lower energy groups, since the downscatter 
source, DQ” I, involves only updated contributions from higher groups. Having 
obtained QQ, one then solves the within-group equation in the inner strategy, 

with j the inner cycle index, in analogy to the outer index, i. Equation (58) is 
iterated until convergence is met. Each outer iteration thus involves one pass 
through all the energy groups in solving Eq. (58). At the end of the outer cycle, con- 
vergence is again tested and QQ is updated for the next pass, if necessary, Con- 
vergence properties and spectral radii are determined by the norm of the iteration 
matrix, (L+E)-‘(S+D+U). 

Solution accuracy depends on the iteration-cutoff convergence parameter, 6, 
absolute error, e, and the spectral radius of the iteration operator, K, in coupled 
fashion. Equation (53) can be cast 

@=(L+E)-‘(S+D+U)@+(L+E)-‘Q=K@+R. (591 

Defining the absolute error, e”, after n iterations, 

with dD the solution to Eq. (53) we obviously have, from the above, 

The relative convergence criteria, 6, that is applied to Eq. (61) requires 

as an iteration cutoff. Denoting the maximum eigenvalue of the operator K as K, 
and iterating the middle term of Eq. (61) j times, there results in general, 

le’-’ -ee’j < PtiJ 

581/72/l-13 
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for !J@ the initial flux guess, and 0 d ti < 1. From Eqs. (60), (61), and (63) therefore 

le”l < f !Pk”, (64) 

or, expanding, 

k=n+l 

le”( < P(K”+~+K~+~+Tc~+~+ . ..). (65) 

Since, from Eqs. (62) and (63), 

9%” E 6, (66) 

we can estimate the absolute error, using only the relative convergence criteria of 
Eq. (62) and spectral radius, 

SIC 
le”l <-----. 1-K (67) 

Relative convergence criteria of 0.001 produce less than 1% absolute error for spec- 
tral radii less than 0.9 in applications. 

7. NUMERICAL COMPARISONS AND RESULTS 

The moving background terms quantified in the previous sections are easily 
encoded into standard modules [S-12]. Obviously, their inclusion necessitates 
higher order Legendre source and cross section expansions and a few more 
iterations to satisfy convergence. Specific term by placements are summarized by 
Eqs. (54). To isolate relative motion effects, we consider a few simple test problems. 

The first is a dense lead shell neutron source, surrounded by berylium and iron 
merely to provide some heterogeneity. The berylium also reflects neutrons and the 
iron imparts some mechanical rigidity to the overall system. The inner radii of the 
lead shell, berylium, and iron are 0.70 cm, 2.84 cm, and 4.12 cm. The center is void 
and the outer radius (iron) is 4.37 cm. Lagrangian hydrodynamics and transport 
are coupled in a spherical one-dimensional simulation using Eq. (21) and the con- 
tinuity, energy, and momentum fluid balance equations. An S, quadrature is 
employed with a P, cross section expansion. Ten neutron energy groups, 
logarithmically spaced between 14 MeV and 100 eV, are also used. A uniform, 
isotropic distribution of neutrons at 5 MeV is assumed, with arbitrary nor- 
malization to Avogadro’s constant. The density of the lead shell, at zero time, is 
taken to be 39.3 gm/cm3. 

In the Lagrangian picture, motion effects are transmitted through the q-la V, 
and q-l0 In p/Dt flux coefficient terms. Figures 1 and 2 show the temporal 
evolution of the lead-berylium, inner interface cell density and acceleration over a 
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FIG. 1. Density of lead-berylium inner interface zone. 

span of 140 ns. Similar profiles result in all zones. Taking a = 0 to isolate the advec- 
tive derivative effects, Fig. 3 contrasts the neutron leakage out of the iron surface, 
neglecting and including the density derivative in the Lagrangian transport 
equation. Figure 4 contrasts the effects of the acceleration term only, including the 
advective derivative in both leakage calculations. In the beginning, the accelerative 
and density changes are small. The shell outer (boundary) ceil expands in size, even 
as the inner cell fills the void. The density decreases as the volume increases, until 
later when the system cools. The acceleration increases, decreases, and t 
increases again as the berylium and iron move away. Although not shown, 
outer (iron) boundary monotonically increases in velocity as the lead shell beats up 

and expands in both directions. By 100 ns the cumulative effects of the materiel 
motion terms become evident in the neutron leakage comparisons. Neglect of the 
density derivative in the transport equation leads to neutron leakages too high by a 
factor of 25 % at 120 ns in this case. Neglect of the local acceleration term is less 
dramatic, producing only a 3 % overestimation of the leakage at the same time. Of 

FIG. 2. Acceleration of lead-berylium mner interface zone. 
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FIG. 3. Neutron leakage comparison for lagrangian convection term. 

course, over time the cumulative effects are significant in both instances, though the 
effects of the Lagrangian advective derivative predominate. 

As a second problem, consider the Eulerian transport of an isotropic, 
monoenergetic, boundary source of electrons incident on a moving slab of 
aluminum ions. The incident electron energy is 100 keV. The slab of aluminum ions, 
7.835 x 102r ions/cm3, is assumed to be moving at &, the speed of a 100 keV electron 
in the positive (rightward) direction. The electrons are incident on the left boundary 
of the 0.1 cm thick slab. Ten equally spaced zones in an S4, PO approximation, with 
ten equally spaced energy groups, between 105 and 5 keV, are employed with room 
temperature, Spitzer [21] electron-ion, scattering cross sections. Equation (16) is 
used to perform the Eulerian steady state calculation and all hydrodynamic coupl- 
ing is turned off. 

Figure 5 plots the scalar across the mesh using both the Eulerian effective, Eqs. 
(6), and static cross sections. The plotted fluxes represent the multigroup sums at 
the mesh points. Figure 6 depicts the multigroup scattering cross section as a 

FIG. 4. Neutron leakage comparison for lagrangian acceleration term. 
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FIG. 5. Electron scalar flux comparison for eulerian effective cross section. 

function of energy at T= 1 eV. Cross sections monotonically increase with decreas- 
ing energy and the effective cross sections are greater than the static ones. Motion 
corrections to the static cross sections obviously also decrease with increasing 
energy. Normalizing to the same source, there are differences in the scalar fluxes, 
even though motion effects on the angular fluxes tend to be symmetric in a P, 
expansion, cancelling each other over incoming and outgoing directions. That is, 
decreases in the angular fluxes for p > 0 (rightward directions) are compensate 
increases in the angular fluxes for p d 0 (leftward directions). Electrons moving to 
the right approach the ions with a smaller relative velocity than their frame 
velocity, while electrons moving to the left have a larger relative velocity than their 
frame velocity. Since cross sections increase with decreasing relative velocity, the 
primary component of the source, moving rightward, senses a higher scattering 
cross section and hence the flux suffers a commensurate reduction across all zones. 
Conversely, the scattered leftward component senses a smaller scattering cross sec- 
tion and the flux acquires a boost across all zones. Figures 5 and 6 are, of course, 

10 20 30 *0 90 

FIG 6. Electron-ion multigroup scattering cross section 
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consistent with this interpretation. Differences in the scalar and angular fluxes grow 
with increasing penetration. At a depth of 0,l cm, differences are near the 6 % level. 

Similar analyses of moving material effects on charged and neutral particle trans- 
port and energy deposition in ICF targets have been reported [22,23] by Velarde, 
Aragones, and Honrubia. An extensive theoretical and interesting numerical study 
of moving material effects in radiative transfer applications, paralleling some 
aspects of our analysis, has been presented [24] in this journal by Mihalas and 
Klein. In cases involving high energy electron and light ion transport, as well as 
radiation transport in general, moving material effects are not as significant (com- 
pared to heavier, less energetic particles). Energetic, light, charged particles and 
photons usually possess signal velocities considerably in excess of background 
material velocities. Corrections to cross sections, opacities, sources, and equations 
expressed, for instance, as power series ratios of material to particle speeds then 
tend to vanish. 

8. SUMMARY 

The standard linear transport equation, with a fixed material background, has 
been extended to include all material motion effects in both Eulerian and 
Lagrangian pictures. Qualitative and quantitative descriptions of motion effects 
have been presented and contrasted in one-dimensional plane and spherical 
geometry, and two-dimensional cylindrical geometry. Specific numerical examples 
and test problems have been compared. Particular differential forms for various 
transport operators have also been detailed in one-dimensional and two-dimen- 
sional cylindrical geometries. 

Four correction terms have been described and comparative calculations detail- 
ing their specific effects have been contrasted. These corrections take the form of a 
density modification and pseudo-acceleration in Lagrangian frames, and a cross 
section renormalization and source transformation in Eulerian frames. External for- 
ces, if present, contribute additional acceleration corrections to both the 
Lagrangian and Eulerian transport equations. These corrections can be substantial 
in applications, particularly when material velocities approach particle velocities or 
material properties change rapidly over time steps. Within known iteration schemes 
for solving the multigroup transport equation, motion correction terms can be 
systematically included. Our experiences indicate that the additional computational 
overhead incurred by their inclusion is relatively small, 

APPENDIX A: TRANSPORT OPERATORS 

We consider three geometries: one-dimensional plane and spherical, and two- 
dimensional cylindrical geometry. Unit vectors in the x, y, z directions are denoted 
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by i, j, k, while unit vectors in the Y and d directions are similarly denoted as f an 
h. The magnitudes of the velocities, v and q, are defined 

u2=v;+v~;+v,2, 

q2 = 42, + q; + q;, 

in evaluating explicit terms The magnitude of the radius vector, r, is also given by 

r2=,y2+y2+z2=d2+z2. (AZ) 

with d the cylindrical radius vector. 
Expressions for q . V and a. V, are derived in the Lagrangian picture. The 

corresponding Eulerian expressions for v. V and a . V, are obtained from the 
Lagrangian relationships by making the obvious substitutions, 

au h 
v-+q, --- at Dt 

One-Dimensional Plane And Spherical Coordinates 

In one-dimensional plane coordinates, (x, q, p), we have 

x~q=xq,=sq~, (A31 

with ,LJ the cosine of the angle between x and q. Transforming from the 
(x, y, 3, qr, q,, q_) to the (x, q, p) basis using Eqs. (Al), (A2), and (AZ%), it follows 
that 

Denoting the material velocity, u, 

u =iu,, (A51 

and the acceleration, ti: 

e = ic x2 (AhI 

the local representation of the material acceleration term in Eq. (19) is given by 

In one-dimensional spherical geometry, (Y, q, ,u) we similarly define 
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with p again the cosine of the angle between r and q. Transforming from the 
(x, y, z, q,, qY, q,) to the (v, q, p) representation using Eqs. (Al), (A2), and (A8), 
we obtain 

q.~=qp!!-+q(‘-~2P. Y ap 

In analogy with Eqs. (A5) and (A6), we take the material velocity, u, 

and acceleration, I, 

so that 

u = lu I2 (AlO) 

li = 122 f-5 (All) 

+p(l--2) ?-: -&. [ 1 (A121 

Two-Dimensional Cylindrical Coordinates 

In two-dimensional cylindrical geometery, (d, z, q, p, q), the direction cosines, p 
and v], are defined 

d.q=(x+y).q=xq,+yq,=dq,=dq~, 
z.q=zq,=zqy. 

(A13) 

Transforming from the (x, y, z, qx, qv, q=) picture to the (d, z, q, p, q) represen- 
tation, we obtain 

(A14) 

with 

p2+q2+t2= 1. W5) 

The planar angle, co, is often useful [ 11, 13, 141, 

/J=(l-$)1’2cosw, 

5 = (1 - q2)ri2 sin 0, 
C-416) 
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so that the angular derivative in Eq. (A14) can also be written, changing variables, 

Taking the material velocity, II, 

u=hu,+ku,, (A181 

and acceleration, 8, 

ti=hti,+kzi;, (A19) 

we find 

APPENDIX B: ACCELERATION OPERATORS 

The acceleration terms are complicated and difficult to treat systematically in the 
multigroup approach. Velocity derivatives obviously couple energy groups and 
angular derivatives couple directions. In the various geometries, one can first write 
the operator q-lV, .ad in general form and then make some simplifying 
assumptions for computational ease. 

One-Dimensional Plane And Spherical Coordinates 

In one-dimensional plane and spherical geometry, we find using the same tech& 
ques as before, 

bV,.ad=l ,u%+-- 
[ 

a (I-$) a 
afi 1 aA 4 4 

and 

bVq.aq$=+ p-+-- I 
a (I-$) a 
aq 4 ap 1 

44. 
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The component accelerations are given by 

a,=$-%-(q.V)u,, 

a,+s-(q.V)u,“. 

Obviously the acceleration operator, V, . (ad), is one-angle coupled, p, in both of 
these one-dimensional cases. 

Two-Dimensional Cylindrical Coordinates 

In two-dimensional cylindrical geometry, 

with the component accelerations, 

a,=!$$-(q-V)u,, 

a==!$%-(q.V)u,. 

036) 

The acceleration operator in spherical velocity space, V,. (ad), is two-angle 
coupled, p and y, in this case. 

Clearly the acceleration terms in each of the three geometries have the same 
general form and, apart from the vector divergence part, (q . V), are simple to 
compute. A simplification to the the material acceleration, a, assumes that the 
longitudinal component of (q . V) is dominant. In each of the geometries, we 
explicitly obtain 

and 

038) 

P9) 

which is still exact for one-dimensional plane geometry, but approximate in the 
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other cases. Equations (BS) and (B9) thus amount to a neglect of transverse 
variations in the material acceleration components and Eq. (B7) is exact. 

In each geometry, the acceleration term contributes an energy transfer operator, 
a/@, and either one, or two, scattering operators, a/ap and a/iiv. In the 
tipgroup approach [l&13] the energy transfer terms are outer sources wit 
scattering terms are inner sources in the dual iteration strategy used to solve the 
equation. 
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